1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
| Xception( (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), bias=False) (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (block1): Block( (skip): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) (skipbn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (rep): Sequential( (0): SeparableConv2d( (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64, bias=False) (pointwise): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): SeparableConv2d( (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) (pointwise): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) ) ) (block2): Block( (skip): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False) (skipbn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (rep): Sequential( (0): ReLU() (1): SeparableConv2d( (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128, bias=False) (pointwise): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) (4): SeparableConv2d( (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False) (pointwise): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) ) ) (block3): Block( (skip): Conv2d(256, 728, kernel_size=(1, 1), stride=(2, 2), bias=False) (skipbn): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (rep): Sequential( (0): ReLU() (1): SeparableConv2d( (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256, bias=False) (pointwise): Conv2d(256, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) (4): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) ) ) (block4): Block( (relu): ReLU(inplace=True) (rep): Sequential( (0): ReLU() (1): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) (4): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU(inplace=True) (7): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (8): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (block5): Block( (relu): ReLU(inplace=True) (rep): Sequential( (0): ReLU() (1): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) (4): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU(inplace=True) (7): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (8): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (block6): Block( (relu): ReLU(inplace=True) (rep): Sequential( (0): ReLU() (1): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) (4): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU(inplace=True) (7): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (8): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (block7): Block( (relu): ReLU(inplace=True) (rep): Sequential( (0): ReLU() (1): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) (4): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU(inplace=True) (7): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (8): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (block8): Block( (relu): ReLU(inplace=True) (rep): Sequential( (0): ReLU() (1): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) (4): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU(inplace=True) (7): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (8): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (block9): Block( (relu): ReLU(inplace=True) (rep): Sequential( (0): ReLU() (1): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) (4): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU(inplace=True) (7): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (8): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (block10): Block( (relu): ReLU(inplace=True) (rep): Sequential( (0): ReLU() (1): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) (4): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU(inplace=True) (7): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (8): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (block11): Block( (relu): ReLU(inplace=True) (rep): Sequential( (0): ReLU() (1): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) (4): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU(inplace=True) (7): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (8): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (block12): Block( (skip): Conv2d(728, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False) (skipbn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (rep): Sequential( (0): ReLU() (1): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 728, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (2): BatchNorm2d(728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): ReLU(inplace=True) (4): SeparableConv2d( (conv1): Conv2d(728, 728, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=728, bias=False) (pointwise): Conv2d(728, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (5): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) ) ) (conv3): SeparableConv2d( (conv1): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1024, bias=False) (pointwise): Conv2d(1024, 1536, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bn3): BatchNorm2d(1536, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv4): SeparableConv2d( (conv1): Conv2d(1536, 1536, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1536, bias=False) (pointwise): Conv2d(1536, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) ) (bn4): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (fc): Linear(in_features=2048, out_features=1000, bias=True) )
|